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The curse of meshless methods

@ Meshless methods have very appealing properties (versatility, low
numerical diffusion..) but they classically exhibit suboptimal
convergence rates
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Rationale

The curse of meshless methods

@ Meshless methods have very appealing properties (versatility, low
numerical diffusion..) but they classically exhibit suboptimal
convergence rates

@ Shouldn’t numerical integration and numerical differentiation (
discrete gradient) satisfy some compatibility conditions as the
mesh-based methods do ?

Discrete Gradient Theorem as the cornerstone [Bonet & al]
%Vu = ¢ U
C oc
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ﬂ Compatibility in the context of nodal integration
e Approximate compatibility

e Towards element-based integration



0 Compatibility in the context of nodal integration
Q Approximate compatibility

Q Towards element-based integration



Cloud of points : C
Boundary nodes 0C C C




Meshless discretization C/i

get it right®

Cloud of points : C
Boundary nodes 0C c C

Meshless operators :

@ Nodal volume quadrature : %f => Vifi
c

ieC

@ Boundary quadrature :56 f= Z fily
ac i€dc
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Meshless discretization C/i

get it right®

Cloud of points : C
Boundary nodes 0C c C

Meshless operators :

@ Nodal volume quadrature : %f => Vifi
c

ieC

@ Boundary quadrature :56 f= Z fily
ac i€dc

@ Meshless gradient : V;Vif = > A,
FEN(3)
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Wa(x)=W(x-xu)

convergence
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FIG. 2.2: Approzimation de ¥ et 1 sur une répartition régulitre de particules en 2D



((wmp = ?(f*—fi) B VWi (s — i)

C

— —ZVj B, VWh(x; —x:)(f; — )
jec

I, = —ﬁ(x*—xi) ® B; VW3 (x4 — %)
L C




Renormalized SPH [Vila & al] C./
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Recovery of P;-consistency

VIS = — B~ ) B IWi (.~ %)
= = Vi B, VWi(x; — x:)(f; — fi)
jec
Iy = _¢(X* - Xi) ® B; VW, (X* - Xi)
\ C
this time gradient convergence is ensured for € < h )
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Moving Least Squares [Lancaster & Salkauskas] © 1

get it right®
Standard Formulation Alternative formulation [Levin]
ViSu = , {B;} = argmin ) W,;'C}
argming Z Wij (uj —ui — b - (x; — x;)) {cii} jen,
JEN; s.t. Z Cij ® :L‘j — :L‘z) =Id
JEN;
W%Su = Z Bij (u; —us)
JEN;
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/QfV-g-l-g-Vdezfmfg-dS \




/va-g+g-Vde=/mfg-ds \
%fv~g+g-v*f=5écfg \




/QfV-g%—g-Vdez/GQfg-dS \
%fv~g+g-v*f=5écfg \

ViVif= > (—Aji+6i,T0)f
JEN(3)




Find u € H'(Q2) such that :

/Vu-sz/sv Vv € H(Q)
Q Q

Ujpn = Uo




Plug & play discretization of diffusion equation

Continuous weak formulation
Find u € H!(£2) such that :

/Vu-Vv:/sv Vo € HE(Q)
Q Q

Ujpn = Uo

Discrete weak formulation
Find v : C — R such that :

%Vu-sz%sv Vv :C\oC — R
C @

Ujgc = Uo
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Plug & play discretization of diffusion equation

Continuous weak formulation
Find u € H!(£2) such that :

/Vu-Vv:/sv Vo € HE(Q)
Q Q

Ujpn = Uo

Discrete weak formulation
Find v : C — R such that :

Astab (U, V) %Vu Vv = %sv Vv : C\OC — R

Ujgc = Uo
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Find v : C — R such that :
{ —-V! - Vu=s; VieC\dC

Ujpc = Uo




Find v : C — R such that :
{astab (u,0,) = Vi -Vu=s; Viel\oC

Ujpc = Uo




Find v : C — R such that :
{astab (u,0,) = Vi -Vu=s; Viel\oC

Ujpc = Uo

@ V=1,




Find v : C — R such that :
{astab (u,0,) = Vi -Vu=s; Viel\oC

Ujpc = Uo

@ V=1,
e V1=0




Find v : C — R such that :
{astab (u,0,) = Vi -Vu=s; Viel\oC

Ujpc = Uo

@ V=1,
e V1=0 Compatibility !




Linear patch test C./i

get it right®

Equivalent nodewise formulation
Find u : C — R such that :
{(W, (u,0,) =V -Vu=s; VieC\dC

Ujgc = Uo

Necessary conditions for the linear patch test

o W:L‘:Id
@ V1=0

& Discrete Gradient Theorem : #Vu = % U
€ ac
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. N The anti-symmetric edge coefficient
\ By Bi; = Ay; — Aj; does fulfill a volume
. - A -—’\"' e ,. closedness property :
-
~ \\'* (O -
o« V! -
~ g
__:"___-/:—— Z Bji + dicocl'i =0
. - :"\ irv~J 0, JEN(3)

-
(=== '. ~o = similar to vertex-centered FV
e -

" h. discretizations



Viu = Vu + Z B j(ug —u; — Viu - (x5 — ;)
JEN (i)




Vfu = qu + Z ”i,j(uj — U; — Vlu . (Xj — Xz))
JEN(3)

Correction preserves linear consistency :

V/J'i,ja Vx =1 = Véx = 1,



Vfu = qu + Z I'l’i,j(uj — U; — Vlu . (Xj — Xz))
JEN(3)

Correction preserves linear consistency :

V/J'i,ja Vx =1 = Véx = 1,

Solve V"1 = 0 for p; ; (in the least-norm sense) given V
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10t

U — U
[| tnum exact|| Non-corrected

100

|| tnum — Uexact|| h0-42

10t

Corrected
102} [|ttnum — Uexact|| htTT
h
10';073 102 10
VI f ==Y ViBVWi(x; — xi)(f; — fi)
jec
B! = - Z ViVIWh(x; — xi)(xj — x;)"
jec



o Compatibility in the context of nodal integration
e Approximate compatibility

Q Towards element-based integration



@ Compatibility correction works well but it comes with a cost




Towards a cheap compatibility correction C./

get it right®

Rationale
@ Compatibility correction works well but it comes with a cost

@ Do we really need to correct up to machine (or say, very good)
precision ?
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Towards a cheap compatibility correction

Rationale

@ Compatibility correction works well but it comes with a cost

@ Do we really need to correct up to machine (or say, very good)
precision ?

Order of magnitude of the compatibility defect

1
Vil = — ﬁai—ﬁwi}

Vi { ac C
1

= > (A +6i,T)
" jEN(i)

1
- O<h>
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10"

10°

107

107

103

| tnum — Uex%
h

1073 10

10"

91 < 50
|91 < 20
|91 < 10
I 1) < 5
|91 < 2
w1 < 1
V1) < 0.5
V1] < 0.2
V1] < 0.1



Convergence for different values of ||V*1]| C./i

get it right®

‘ |71 < 50

||Unum - UexactH

10° b

V1] < 5
10" |
71 < 1
107 | o 1 HW*IHS 0.5
h
10;03 107 107

Observation : Keep ||V*1|| = O(1) instead of |V*1| = O(h™1)
= recover almost second order convergence !
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0 Compatibility in the context of nodal integration
Q Approximate compatibility

e Towards element-based integration



Are we restricted to nodal integration ? C/i

get it right®

@ Element-based integration
might prove beneficial in term of
algebraical complexity (assembly,
connectivities..) as well as nume-
rical stability (nodal integration is
deemed to yield spurious modes)

@ Should be regarded as a natu-
ral generalization (nodal integra-
tion fits gracefully in the extended
framework)
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Cloud of nodes : C
Integration points : O
Boundary 00O = oC




Cloud of nodes : C
Integration points : O
Boundary 00O = oC

Meshless operators :

@ Meshless reconstruction : f. = Z ;e fi



New discretization set-up C/i

get it right®

Cloud of nodes : C
Integration points : O
Boundary =0C

Meshless operators :

@ Meshless reconstruction : fo = > ;. f;
1€Ve

@ Element-based cubature :% f= Z Ve fe
Q eeQ

@ Boundary quadrature : f=> £l
9Q i€dQ
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New discretization set-up

Cloud of nodes : C
Integration points : O
Boundary =0C

Meshless operators :

C./i

get it right®

o —T

L]
°
S

@ Meshless reconstruction : f. = Z D, . fi

1€ Ve

> Vefe
f= Z fily

@ Element-based cubature : # f=
Q

@ Boundary quadrature :
a9

@ Meshless gradient : V.V, f = Z Aifi

i€V (e)

Pierrot, Fougeron

June 8th 21/36
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%fv-g+%g-v*f=5écfg




%fv-g+%g-v*f=ggcfg

%fv-g+%g-v*f=gégfg \




%fv-g+§ég-v*f=gécfg \

%fv-ng%g-W*f:géQfg

V;,W:f: Z (_Ae,i+5e,iri)fe
V(e)>i




How to define meshless elements ? C./

get it right®

Intuition : place integration points at holes location

@ Equip each node with a specific smoothing length :{x;, h;};
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How to define meshless elements ?

Intuition : place integration points at holes location

@ Equip each node with a specific smoothing length :{x;, h;};

@ Use kernel estimation of density function :

p(x) =D Wh, (x —x;)

1eC
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How to define meshless elements ?

Intuition : place integration points at holes location

@ Equip each node with a specific smoothing length :{x;, h;};

@ Use kernel estimation of density function :
p(x) = > Wi, (x —x;)
ieC

@ Locate integration points at local minima of the estimated density
function :

{&\ Vp(&) = 0and D?p(&) > 0}
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How to define meshless elements ?

Intuition : place integration points at holes location

@ Equip each node with a specific smoothing length :{x;, h;};

@ Use kernel estimation of density function :
p(x) = > Wi, (x —x;)
ieC

@ Locate integration points at local minima of the estimated density
function :

{&\ Vp(&) = 0and D?p(&) > 0}

@ Process can be iterated by adding newly computed integration
points to the initial cloud
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Meshless Elements : Hammersley sequence C/i
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lterated elements construction /1
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Meshless Elements : cartesian arrangement C/i

tit right®
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Meshless Elements : random distribution C/i
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node-based integration
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10°

104}

107}

102}

10!

v4

1073

101

node-based integration

element-based integration

iterated element-based




10°
uniform
10t}
specific volume (p )
102 Dirichlet regions
107
1073 107 101



Influence of aliasing level : % = 0.03 C/i
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Influence of aliasing level : % =0.1 C/i
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@ Concept of dual gradient has been introduced




@ Concept of dual gradient has been introduced

@ Discrete Gradient Theorem has been proposed as the corner stone to enforce
compatibility in between numerical integration and differentiation




Conclusion C./
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Summary

@ Concept of dual gradient has been introduced

@ Discrete Gradient Theorem has been proposed as the corner stone to enforce
compatibility in between numerical integration and differentiation

@ An incomplete correction has been proposed with order of magnitude cheaper
CPU cost while almost no loss of accuracy
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Conclusion

Summary

Concept of dual gradient has been introduced

Discrete Gradient Theorem has been proposed as the corner stone to enforce
compatibility in between numerical integration and differentiation

An incomplete correction has been proposed with order of magnitude cheaper

CPU cost while almost no loss of accuracy

A meshless element construction based on kernel estimation has been described
The compatibility framework has been successfully extended to element-based

integration
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Conclusion
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@ Further demonstration of the concept and integration within an industrial meshless
code
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Conclusion

Summary

@ Concept of dual gradient has been introduced

@ Discrete Gradient Theorem has been proposed as the corner stone to enforce
compatibility in between numerical integration and differentiation

@ An incomplete correction has been proposed with order of magnitude cheaper
CPU cost while almost no loss of accuracy

@ A meshless element construction based on kernel estimation has been described

@ The compatibility framework has been successfully extended to element-based
integration

Outlook

@ Further demonstration of the concept and integration within an industrial meshless
code

@ Are there alternative vehicles than gradient coefficients to enforce compatibility ?
(idea : play on nodes positions - see talk of Gabriel Fougeron)
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Thank you !

guillaume.pierrot@esi-group.com  gabriel.fougeron@esi-group.com
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